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1. Introduction 
Wildland fire has played a role in the development of some of the flora and fauna of the Hawaiian 

Islands given the volcanic nature of the archipelago’s origin.  However, the current floral and faunal 
composition of the major islands (Kaua’i, O’ahu, Moloka’i, Maui, and Hawai’i) is quite different from the 
biota that were present when humans first settled the islands circa 600 A.D.  Large percentages of the land 
area on the major islands have been transformed by human activity, drastically altering fire regimes.  For 
example, invasive non-native grass species have increased the occurrence and extent of wildland fire 
(D’Antonio and Vitousek, 1992).  Fire can be detrimental to some native plants in Hawaii thereby 
jeopardizing survival and leading to loss of biodiversity (Mehrhoff, 1998).  However, some native species 
appear to respond well to low intensity fires.   

Fire behavior computer models are useful tools to understand the function of vegetative fuel types 
in propagating fire and predicting the effectiveness of fire management techniques in protecting and 
restoring native vegetation.  These models (e.g., FARSITE (Finney, 1998)) require maps of fuel models, 
which are the quantitative description of the vegetation fuel bed in two or three dimensions.  There is little 
vegetative fuels information available for the Hawaiian Islands.  A recent advancement was the 
completion of the U.S. Forest Service stereo-photograph series and vegetation plots which quantitatively 
describe fuel properties in a range of grassland, shrubland, woodland and forest vegetation types at 36 
sites across five of the islands (Wright et al., 2002).   

Remote sensing has immense potential for fire behavior modeling in that it can provide larger 
extents and more frequent measurements of fuel-load parameters than what is currently available.  The 
objectives of this study were to: 1) assess the utility of AVIRIS spectral features for per-pixel estimation 
of fuel parameters, and 2) compare the relative benefits of narrowband (i.e., AVIRIS) and broadband (i.e., 
Landsat ETM+) formulations of vegetation indices in estimating fuel properties.    
 
2. Data acquisition and processing 

The study was focused on the islands of 
Hawai’i, Kaua’i, Moloka’i, O’ahu and Maui in the 
Hawaiian archipelago (Fig. 1).  Field data from 24 
vegetation sampling plots (Fig. 1) were collected in 
November 1999, July 2000 and February 2001 
(Wright et al., 2002).  There were 9 grassland, 3 
shrubland, 7 woodland and 5 tree-plantation plots 
sampled from 47 to 2037-m elevation.  Tree 
plantations were dominated by Casuarina 
equisetifolia, Pinus radiata, Pinus pinaster, or Pinus 
elliottii.  Thirteen of the plots were on Hawai’i island, 
mainly on the drier side of the precipitation gradient 
that runs from east to west across the island.  Fuel 
parameters measured included percent canopy cover 
and the biomass of dead and live materials.  Dead-
wood biomass was classified into diameter classes: 
<0.64 cm, 0.65-2.5 cm, 2.6-7.6 cm and > 7.6 cm.  
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Figure 1. Study islands (shaded) and associated, co-located 
plot and AVIRIS scene locations. 



 

These size classes correspond to 1-hr, 10-hr, 100-hr and 1000-hr fuel moisture time-lag classes, 
respectively, which are commonly used in fire models (Anderson, 1982).  Other dead materials included 
litter and duff.  Live-material biomass included herbaceous components (i.e., forbs, ferns and graminoids) 
and woody shrubs.  Canopy cover had tree, shrub and herbaceous components and is important because it 
is used in fuel moisture and wind reduction calculations in fire modeling (Albini and Baughman, 1979; 
Rothermel et al., 1986). 

High-altitude AVIRIS data were collected in April, 2000 with a 20-m Ground Instantaneous Field 
of View (GFOV).  Runs were processed to apparent surface reflectance with the MODTRAN radiative 
transfer model (Green et al., 1993).  Reflectance from several field calibration spectra (beaches) were 
used to remove artifacts in modeled reflectance spectra (Dennison et al., 2001).  Calibrated AVIRIS 
scenes had to be georegistered so that field plots could be located for the sampling of image pixels.  
Georegistered base information included vector road layers (State of Hawaii, Office of Planning, 1998) 
and Landsat ETM+ imagery registered to the road vector layer.  We georegistered a total of 13 AVIRIS 
scenes to the UTM projection (Zone 4, Datum WGS 84) with first-order polynomial transformations and 
nearest-neighbor, 20-m resampling. Transformation equations were built by visually matching points 
within the AVIRIS imagery to registered points in the Landsat images or the road layer.  Root-mean-
square error ranged from 0.5 to 1.8 m, using between 5 to 14 points.     

Field plots were located in georegistered AVIRIS scenes based on plot-center GPS coordinates.  
Due to georegistration errors, plot-center location errors, and cloud coverage, the image sampling 
locations of 10 plots were shifted between 30 to 500 m to locate more appropriate sampling locations.  
Care was taken to locate the adjusted plot centers in the same vegetation patch.   
 
3. Hyperspectral features analyzed 

Spectral mixture analysis (SMA) of AVIRIS data was performed using a 4-endmember (EM) 
model consisting of green vegetation (GV), non-photosynthetic vegetation (NPV), soil and 
photogrammetric shade reference EMs.  Following techniques outlined by Roberts et al., (1998a), 
reference EMs were selected from an AVIRIS-convolved library of field spectra (Dennison et al., 2001) 
according to the criteria that they produced low root-mean-square error (RMSE) and physically-
reasonable fractions. 

Several vegetation liquid water indices were calculated from AVIRIS reflectance spectra.  
Equivalent Water Thickness (EWT; Roberts et al., 1998b) was calculated using the water absorption 
feature between 865 and 1065 nm.  The Water Band Index (WI; Peñuelas et al., 1993; Sims and Gamon, 
2003) was calculated as R900 / R970 (the ratio of reflectance (R) at 900 and 970 nm, respectively).  The 
Normalized Difference Water Index (NDWI; Gao, 1996) was calculated as (R860 - R1240) / (R860 + R1240).   

Narrowband vegetation indices included the Vegetation Index (VI = R800 / R680; Sims and Gamon, 
2003),  Normalized Difference Vegetation Index (NDVI = [R800 - R680] / [R800 + R680]; Sims and Gamon, 
2003), Soil-Adjusted Vegetation Index (SAVI = 1.5 * [R800 - R680] / [R800 + R680 + 0.5]; Huete, 1988), and 
the Photochemical Reflectance Index (PRI = [R531 - R570] / [R531 + R570]; Gamon et al., 1997).  Landsat 
ETM+ broadband imagery was simulated using AVIRIS reflectance spectra and the ETM+ spectral 
response functions for the 6 optical bands.  Broadband vegetation indices were then calculated from 
simulated ETM+ data.  These indices included ETM_VI (R830 / R660), ETM_NDVI [(R830 - R660) / (R830 + 
R660)], and ETM_SAVI [1.5 * (R830 - R660) / (R830 + R660 + 0.5)].  ETM+ indices had the 20-m spatial 
resolution of the AVIRIS reflectance data. 
 
4. Statistical Analyses 

Mean and standard deviation values for reflectance spectra, indices, and SMA output (fractions 
and RMSE) were calculated from a 3x3-pixel kernel (60 x 60-m = 3600 m2) centered on each plot.  
Single- and multiple-regression analyses were used to assess the relationship between field-measured fuel 
parameters (e.g., 1-hr fuels) and hyperspectral features (e.g., EWT, GV fraction).  Analyses included the 
square-root (SQRT) transformation of the dependent variables (i.e., fuel parameters).  SQRT was 
included as the final model if the adjusted-r2 value was higher than that without the transformation.  For 



 

multiple-regression, the S-Plus 2000 
LEAPS step-wise procedure 
(Mathsoft Engineering & Education, Inc., 
Cambridge, MA) was used with a minimum 
Mallow’s-Cp criteria to select the best 
model using all independent variable (i.e., 
hyperspectral features) combinations.  
Regression models from LEAPS with fewer 
variables than the minimum-CP model were 
also considered.   A lower-variable model 
was selected if 1) it was significant 
according to the F statistic (α= 0.05) and 2) 
a comparison against a higher-variable 
model was not significant (F-statistic, α= 
0.05). 
 
5. Results and Discussion 

There were significant differences 
in fuel parameters among the four 
vegetation types—grasslands, shrublands, 
woodlands and plantations—for all fuels 
except for live forb biomass and percent 
cover of forbs and ferns (Kruskal-Wallis 
tests; α= 0.05).  As is expected, there was a 
consistent increase in 10-hr, 100-hr, 1000-hr 
fuels and litter biomass in a gradient of 
increasing woody vegetation in the 
grasslands-shrublands-woodlands-plantation 
sequence (Fig. 2). As would be expected, 
live-fuel biomass in grasslands was 
dominated by grasses and dominated by 
shrubs in shrublands (Fig. 3). Live fuels in 
woodlands were a mixture of fuel types, and plantations had little live fuels below the tree canopy 
(Fig. 3). 

The G-01 grassland plot was a 1972 pahoehoe lava flow and had trace amounts of vegetation and 
so its albedo was very low (<10% reflectance; Fig. 4a, G-01).  As percent-cover of grass increased, 
grasslands plot spectra incorporated more grass signal and less soil/lava signal (Fig. 4a).  Because grasses 
were mostly senesced due to an extended El-Niño drought during the April AVIRIS campaign, there was 
only slight expression of near-infrared (NIR, 700-1300 nm) water absorption features and there was little 
chlorophyll absorption at 680 nm (Fig. 4a).  Shrubs were also strongly affected by the drought during the 
AVIRIS campaign.  Spectra from shrublands plots were dominated by NPV, from exposed branches and 
twigs, and soil (weathered lava) which was 12-25% exposed (Fig. 4b).  There was no evidence of liquid 
water absorption in the NIR to shortwave infrared (SWIR, 1500-2508 nm) regions, and slight lingo-
cellulose absorption was expressed in SWIR (Fig. 4b).  Woodlands were a mix of grasses, shrubs and 
trees.  For some plots the dominant spectral signal was from senesced shrubs and grasses (Fig. 4c, W-02, 
W-04, W-05), similar to shrublands plots.  One plot (Fig. 4c, W-06) was located on the wetter southeast 
side of Hawai’i island and its spectral signal had a strong chlorophyll absorption in visible (VIS, 374-700 
nm) and NIR and SWIR water absorption features from Asian swordfern (Nephrolepsis multiflora, 92% 
cover) leaves with high liquid water content.   Tree plantation spectra were dominated by radiance that 
was multiple-scattered in the leaves (mostly needles) of overstory trees (Fig. 4d).  There was strong blue 
(500 nm) and red (680 nm) absorption by chlorophyll, deep expression of NIR liquid water bands (near 
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975 and 1200 nm), and broad absorption by 
liquid water in SWIR (Roberts et al., 2004).  
For plantations, non-photosynthetic dead 
fuels on or near the forest floor (Fig. 2) are 
generally shielded by the optically-thick 
photosynthetic overstory after crown 
closure has occurred. 

Pearson correlation coefficients 
were calculated by relating dead-fuel 
parameters to reflectance on a band-by-band 
basis.  Coefficients closely followed the 
pattern of a photosynthetic overstory 
canopy (Fig. 5a).  For example, red 
absorption (i.e., lower 680 nm reflectance) 
associated with chlorophyll tended to be 
negatively correlated with dead fuels.  As 
mentioned, dead fuels generally increased 
along the grassland-shrubland-woodland-
plantation sequence (Fig. 2), especially for 
litter, duff and the size-class fuels ≥ 0.65 cm 
(i.e., ≥ 10 hr).  Coincident in this sequence 
was an increase in overstory volume of 
photosynthetic material exposed to the 
sensor.  Thus, as overstory cholorphyll 
increased, so did dead fuel biomass; and 
subsequently, red reflectance decreased, 
thereby creating a negative relationship 
between reflectance and dead fuels.  Also, 
volumetric scattering will increase from 
grasslands to plantations due to more 
structure and photosynthetic foliage (e.g., 
higher leaf area index, LAI) in the 
plantation overstory.  This gradient in 
scattering will result in increasing NIR 
reflectance from grasslands to plantations, 
thereby creating a positive relationship 
between dead fuel biomass and NIR bands.  
Because very fine dead materials (< 0.64 
cm 1-hr fuels) did not show a strong 
increase in the grassland-plantation 
sequence (Fig. 2), these fuels had the 
weakest correlations across the spectrum 
(Fig. 5a).  There were weaker correlations 
when considering live fuels (Fig. 5b).  
Graminoid (i.e., grasses) biomass was 
strongly positively correlated (r > +0.6) in 
SWIR bands (1500-2350 nm).  There was a 
negative relationship between tree percent 
cover and graminoid percent cover, and 
more tree canopy tended to reduce SWIR 
reflectance due to water absorption 
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Figure 4. AVIRIS reflectance spectra from plots (average 
of 9 pixels in 3x3 kernel) for a) grasslands, b) shrublands, 
c) woodlands, and d) tree plantations. 



 

(Fig. 4d).  There is thus a positive relationship 
between graminoid biomass and SWIR 
reflectance—with less tree cover, there is more 
grass cover and more SWIR reflectance. 

Relating single AVIRIS-derived 
variables to fuel parameters, r2 values ranged 
from 0.17 to 0.65 (Table 1).  The best 
correlation was +0.80, between litter and NDVI 
(Fig 6a).  This was stronger than the best single-
wavelength correlation for litter (r = +0.73, 760 
nm, Fig. 5a).  NDVI takes advantage of strong 
spectral contrast seen between 680 and 800 nm 
wavelengths (Fig. 5a).  In ecological terms, 
higher NDVI may be associated with high LAI 
(Gong et al., 1995) and more ground litter; and 
thus, an indirect and positive correlation exists 
between NDVI and litter biomass.   Similar 
indirect relationships exist for 10-hr and 100-hr 
fuels, where higher NDVI values are positively 
correlated with increased structural branches 
that support plantation overstory leaves (Table 
1).  These branches are inputs to the layer of 
dead fuels ≥ 0.65 cm on the surface, thereby 
creating a positive, indirect relationship between 
large dead fuels and NDVI (Fig. 6b).  A similar 
argument can be made for the correlation 
between 1000-hr fuels and PRI, however PRI is 
expected to be more negative with increasing 
photosynthetic overstory (Gamon et al., 1997), 
thus explaining the negative relationship 
between the variables (Table 1).  Duff was 
associated with plantations (Fig. 2a) and 
negatively related to NPV (Table 1), indicating 
that plots with higher percent tree cover 
shielded more NPV from the sensor.   

There was a significant -0.70 
correlation between live grass fuels and NDWI 
(Table 1).  If the AVIRIS imagery had been 
acquired in the wet season, NIR liquid water 
absorption would be expected to be deeper 
(higher NDWI) in plantations relative to 
grasslands due to the multiple-scattering 
environment of tree canopies, which tend to 
amplify water absorption features (Roberts et 
al., 2004).  Grass biomass, which decreased 
from grasslands to plantations (Fig. 2b) would 
thus be negatively related to NDWI.  This 
relationship may be even stronger in this 
drought imagery because grass was senesced 
and so had very low NIR liquid water 
absorption (Fig. 4a).  A similar argument is 
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with a) dead fuels and b) aboveground biomass (n=24 
plots). 
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valid for the strong negative correlation between graminoid percent cover and NDWI (Table 1).  As 
expected, percent tree cover was positively correlated (r = +0.80) to NDVI—with more tree canopy, 
NDVI increased because there were more photosynthetically-active leaves. 

Table 1. Single-variable regression of fuel parameters and AVRIS spectral features. 
Dependent Transform Independent R r2 Sig 

DEAD BIOMASS 
1-hr None SOIL -0.50 0.25 * 
10-hr None NDVI 0.70 0.49 *** 
100-hr Sqrt NDVI 0.44 0.20 * 
1000-hr Sqrt PRI -0.56 0.32 ** 
Duff Sqrt NPV -0.67 0.44 *** 
Litter None NDVI 0.80 0.65 **** 
Total Sqrt NDVI 0.72 0.52 **** 

LIVE BIOMASS 
Shrub Sqrt SOIL -0.49 0.24 * 
Forb None GV 0.52 0.27 ** 
Graminoid Sqrt NDWI -0.70 0.49 *** 
Total Sqrt SOIL -0.51 0.26 * 

PERCENT COVER 
Tree Sqrt NDVI 0.80 0.63 **** 
Shrub Sqrt SOIL -0.59 0.35 ** 
Forb & Fern None GV 0.41 0.17 * 
Graminoid Sqrt NDWI -0.77 0.59 **** 

Significance levels: * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001, ns= not significant 

There were 225 single-variable regression analyses performed (15 dependent vs. 15 independent 
variables).  In terms of the number and significance of correlations against the fuel parameters, NDVI, 
NPV and PRI were the most useful AVIRIS-derived features (Table 3).  NDWI outperformed the WI and 
EWT liquid water indices and NPV was the best SMA endmember.  The Landsat ETM+ (broadband) 
versions of NDVI  (ETM_NDVI) had similar performance as to narrowband NDVI, and ETM_SAVI 
outperformed narrowband SAVI in terms of the number and significance level of correlations (Tables 2 
and 3).  There may be other wavelengths to calculate NDVI that could better isolate the red absorption 
and NIR plateau and outperform the broadband NDVI, however such a sensitivity analysis was beyond 
the scope of this research.  Contrary to expectations, SAVI was not as useful as NDVI for single-variable 
predictions.  It may be that the SAVI soil-baseline parameters need to be better calibrated for the 
relatively dark lava-derived soil found in our study areas.    

The square root transformation of the dependent (fuel) variable improved most multiple-
regression equations.  Adjusted-R2 values ranged from 0.22 to 0.83 (Table 4).  Equations contained one to 
four variables and the most common spectral variables used were NDVI, SOIL, RMSE, PRI and SOIL.  
RMSE was a minor component to the models, but its presence suggests that there is an unmodeled 
spectral component that is related to the dependent variables.  For 1-hr and 10-hr fuels, there was a 
negative relationship with VI yet a positive relationship with NDVI.  It was expected that these variables 
would provide equivalent information, and it is not clear why they are contradictory.  The percent tree 
cover relationship is the most instructive model.  The relationship is associated with negative PRI, 
positive EWT and negative NPV.  As tree cover increases, photosynthetic leaves increase and there is 
thus less exposed NPV, less PRI, and more water absorption (high EWT). 



 

Table 2. Single-variable regression of fuel parameters and simulated ETM+ vegetation indices. 
Dependent Transform Independent R r2 Sig 

DEAD BIOMASS 
1-hr None ETM_NDVI 0.17 0.03 ns 
10-hr None ETM_NDVI 0.72 0.52 **** 
100-hr Sqrt ETM_NDVI 0.47 0.22 * 
1000-hr Sqrt ETM_NDVI 0.46 0.21 * 
Duff Sqrt ETM_NDVI 0.61 0.37 ** 
Litter None ETM_NDVI 0.81 0.65 **** 
Total Sqrt ETM_NDVI 0.73 0.54 **** 

LIVE BIOMASS 
Shrub None ETM_VI 0.40 0.16 ns 
Forb Sqrt ETM_NDVI -0.60 0.36 ** 
Graminoid None ETM_NDVI 0.17 0.03 ns 
Total None ETM_NDVI 0.07 0.00 ns 

PERCENT COVER 
Tree Sqrt ETM_NDVI 0.79 0.63 **** 
Shrub None ETM_NDVI 0.17 0.03 ns 
Forb & Fern None ETM_VI 0.40 0.16 ns 
Graminoid Sqrt ETM_VI -0.66 0.44 *** 

 Significance levels: * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001, ns= not significant 
 
Table 3. Summary of significant independent variables in single-variable regression analyses.  

  p ≤ 0.05 p ≤ 0.01 p ≤ 0.001 p ≤ 0.0001 Total 
NARROWBAND VEGETATION INDICES 

NDVI 2 2 2 4 10 
VI 1 5 2 1 9 
SAVI 1 2 4 2 9 
PRI 3 4 2 1 10 

LIQUID WATER INDICES 
EWT 1 1   2 
NDWI 1 3 3 1 8 
WI  2   2 

SPECTRAL MIXTURE ANALYSIS FRACTIONS 
GV 7 2   9 
NPV 2 4 2 2 10 
SOIL 5 3   8 
SHADE 1    1 
RMSE 4 1   5 

BROADBAND VEGETATION INDICES 
ETM_NDVI 2 2 1 5 10 
ETM_VI  4 2 2 8 
ETM_SAVI 2 2 1 5 10 

 



 

Table 4. Multiple-regression analyses of hyperspectral features. 
Dependent Independent Variables Adj-R2 Sig. 

DEAD BIOMASS 
1-hr* 0.320 - 0.107 x VI + 1.930 x NDVI – 0.002 x RMSE 0.53 ** 
10-hr* 1.645 - 0.112 x VI + 3.837 x NDVI – 0.014 x GV - 0.005 x 

RMSE 
0.68 *** 

100-hr* 6.393 - 12.793 x NDWI + 2.936 x NDVI - 0.068 x NPV - 
0.004 x RMSE  

0.53 ** 

1000-hr* -0.529 - 23.293 x PRI 0.32 ** 
Duff* -7.180 - 31.428 x PRI + 0.054 x SOIL  0.69 **** 
Litter* -0.499 - 4.034 x NDWI + 3.882 x NDVI 0.69 **** 

LIVE BIOMASS 
Shrub* 3.965 - 0.026 x SOIL 0.24 * 
Forb -3.181 + 0.034 x GV 0.27 ** 
Graminoid* -5.497 + 0.193 x VI - 2.901 x NDVI + 0.051 x NPV + 0.006 

x RMSE 
0.79 **** 

Total Live* 8.625 - 0.072 x SOIL + 0.010 x RMSE 0.43 ** 
PERCENT COVER 

Tree 92.774 - 489.078 x PRI + 3.290 x EWT - 0.872 x NPV  0.75 **** 
Shrub* 11.981 - 0.0790 x SOIL 0.35 ** 
Forb & Fern -31.160 + 0.344 x GV 0.22 * 
Graminoid -442.127 + 112.268 x SAVI + 434.492 x PRI + 2.847 x NPV 

+ 1.238 x SOIL 
0.83 **** 

6. Conclusion 
In this study we sought to find spectral features that may be useful for estimating important fuel 

properties as potential per-pixel inputs for fire behavior models. The sizes and spatial distribution of dead 
surface fuels are the most important components to characterize in these models.  In the Hawaiian Islands 
landscapes analyzed in this study, we found that these dead fuels tended to increase in size and quantity 
along a grasslands-shrublands-woodlands-tree plantation sequence of vegetation types.  Because AVIRIS 
scenes were acquired during a drought, grasses and shrubs were mostly senesced while tree canopies were 
green, and so photosynthetic materials exposed to the sensor increased in volume and vigor along the 
same grasslands to plantation sequence.  As tree overstory canopy cover increases, the spectral 
component of dead surface fuels are a smaller component in the radiance signal reaching the sensor.  
Therefore, most dead fuels are not directly “sensed” by the sensor, and there is an indirect relationship 
between reflectance properties of overstory photosynthesis and dead fuel biomass.  For this reason, we 
observed that both narrowband and broadband NDVI was positively correlated with increasing dead fuel 
size and quantity.     

Live-fuel biomass and percent cover were not as well predicted as dead-fuel biomass, even with 
the inclusion of more variables in the regression models.  Grass biomass and cover were well predicted 
using NDWI with regressions that explained 49% and 59% of the variance, respectively.  The negative 
relationship between moisture content and quantity of grasses exists because grasses were senescent and 
plantations were not.  The relationship would likely be less distinct in wet-season AVIRIS scenes because 
photosynthetically-active grasses would have deeper NIR liquid water absorption features. 

For 10-hr and 100-hr dead fuels, duff, litter, and tree cover, narrowband NDVI provided single-
variable models that explained 20% to 65% of the variance.  Models were equal or slightly better with 
broadband ETM_NDVI, indicating that a multispectral satellite may provide adequate sensitivity to these 
fuel parameters.  This is important in an operational sense in that ETM+ data over the whole Hawaiian 
archipelago are much cheaper and easier to process for producing island-wide fuels maps.  For other fuel 
parameters, such as grass cover, 1000-hr fuels, and duff, we found that features based on AVRIS data 
were important in single-variable regressions.  Multiple regression equations, which used AVIRIS-
derived variables, appear stronger based on adjusted-R2 values.  Some variables in these equations, such 



 

as PRI, NDWI and EWT can not be calculated from ETM+ data due to the limited band resolution and/or 
position.  Although SMA fractions can be estimated with ETM+, they should be more accurate when 
estimated from hyperspectral data.  At this stage in our research, we found AVIRIS useful for exploring 
different indices.  However, more field data are required to test model estimation error and establish the 
relative advantage of hyperspectral data for vegetation fuel estimation.  Here we estimated individual fuel 
parameters (e.g., 10-hr dead biomass), whereas current fire behavior models take more generalized fuel 
models or types as inputs (Riaño et al., 2002).  Future research should focus on methods to map fuel types 
on a per-pixel basis from estimated fuel parameters, possibly with a decision tree classifier. 
 
7. Acknowledgements 

Funding for field work and image analysis was supplied through cooperative agreement No. 01-
JV-11272166-136 with the U.S.D.A. Forest Service and through the NASA Solid Earth and Natural 
Hazards program (NAG2-1140). We also wish to acknowledge the Jet Propulsion Laboratory, which 
acquired the AVIRIS data used in this study, and supplied the ASD full range spectrometer used for 
collection of field spectra on the Hawaiian Islands. 
 
8. References 
Albini, F. A. and Baughman, R. G. (1979). Estimating windspeeds for predicting wildland fire behavior. 

USDA Forest Service Res. Pap. INT-221. 
Anderson, H. E.  1982.  Aids to determining fuel models for estimating fire behavior.  USDA Forest 

Service Gen. Tech. Rep. INT-122. 
D’Antonio, C. M. and Vitousek, P. M. (1992). Biological Invasions by Exotic Grasses, the Grass Fire 

Cycle, and Global Change. Annual Review of Ecology and Systematics, 23, 63–87. 
Dennison, P. E., Gardner, M. E., Roberts, D. A., and Green, R. O. (2001). Calibration and vegetation field 

spectra collection for the 2000 AVIRIS Hawaii deployment. Summaries of the Tenth Annual JPL 
Airborne Geoscience Workshop, Pasadena, California: Jet Propulsion Laboratory. 

Finney, Mark A. (1998). FARSITE: Fire Area Simulator—Model development and evaluation. USDA 
Forest Service Res. Pap. RMRS-RP-4. 

Gamon, J. A., Serrano, L. and Surfus, J.S. (1997). The photochemical reflectance index: an optical 
indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient 
levels. Oecologia, 112(4), 492–501. 

Gao, B. C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid 
water from space. Remote Sensing of Environment, 58(3), 257–266. 

Gong, P., Pu, R. L., and Miller, J. R. (1995).  Coniferous forest Leaf-Area Index estimation along the 
Oregon Transect using Compact Airborne Spectrographic Imager data.  Photographic Engineering 
and Remote Sensing, 61(9), 1107–1117. 

Green, R. O., Conel, J. E., and Roberts, D. A. (1993). Estimation of aerosol optical depth and additional 
atmospheric parameters for the calculation of apparent reflectance from radiance measured by the 
Airborne Visible/Infrared Imaging Spectrometer. Summaries of the Fourth Annual JPL Airborne 
Geoscience Workshop, Pasadena, California: Jet Propulsion Laboratory. 

Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(3), 
295–309. 

Mehroff, L. A. (1998).  Endangered and threatened species, in Atlas of Hawai’i, 3rd ed., eds. S. P. Juvik 
and J. O. Juvik,.  University of Hawai’i Press, Honolulu, pp. 150–153. 

Peñuelas, J., Filella, I., Biel, C., Serrano, L., and Save,R. (1993). The reflectance at the 950–970 nm 
region as an indicator of plant water status. International Journal of Remote Sensing, 14, 1887–1905. 

Riaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., and Bastarrika, A. (2002). Generation of fuel type 
maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of 
Forest Research, 32(8), 1301–1315. 



 

Roberts, D. A., Ustin, S. L., Ogunjemiyo, S., Greenberg, J., Dobrowski, S. Z., Chen, J., and Hinckley, T. 
M. (2004). Spectral and structural measures of Northwest forest vegetation at leaf to landscape scales. 
Ecosystems, in press. 

Roberts, D. A., Batista, G. Pereira, J., Waller, E, and Nelson, B. (1998a). Change identification using 
multitemporal spectral mixture analysis: Applications in eastern Amazonia, in Remote Sensing 
Change Detection: Environmental Monitoring Applications and Methods, eds. C. Elvidge and R. 
Lunetta, pp. 137–161, Ann Arbor Press, Chelsea, Michigan. 

Roberts, D. A., Brownz, K., Green, R., Ustin, S., and Hinckley, T. (1998b). Investigating the relationship 
between liquid water and leaf area in clonal Populus. Summaries of the Seventh JPL Airborne Earth 
Science Workshop. Pasadena, California: Jet Propulsion Laboratory.  

Rothermel, R. C, Wilson, R. A.,Morris, G. A. and Sackett, S. S. (1986). Modeling moisture content of 
fine dead wildland fuels input to the BEHAVE fire prediction system. USDA Forest Service Res. 
Pap. INT-359. 

Sims, D. A. and Gamon, J. A. (2003). Estimation of vegetation water content and photosynthetic tissue 
area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll 
absorption features. Remote Sensing of Environment, 84(4), 526–537. 

State of Hawaii Office of Planning.  (1998).  Hawaii Statewide Geographic Information System.  
http://www.hawaii.gov/dbedt/gis/ (last accessed 11/01/04). 

Wright, C. S., Ottmar, R. D., Vihnanek, R. E., and Weise, D. R. (2002). Stereo photo series for 
quantifying natural fuels: Grassland, shrubland, woodland, and forest types in Hawaii. USDA Forest 
Service Gen. Tech. Rep. PNW-GTR-545. 

 
 


